YOLOV5实时检测屏幕
目的:保留模型加载和推理部分,完成实时屏幕检测
实现思路:1. 写一个实时截取屏幕的函数2. 将截取的屏幕在窗口显示出来3. 用OpenCV绘制一个窗口用来显示截取的屏幕4. 在detect找出推理的代码,推理完成后得到中心点的xy坐标,宽高组成box5. 在创建的OpenCV窗口用得到的推理结果绘制方框
实现效果:
(资料图)
import argparseimport osimport platformimport sysfrom pathlib import Pathimport torchFILE = Path(__file__).resolve()ROOT = FILE.parents[0] # YOLOv5 root directoryif str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATHROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relativefrom models.common import DetectMultiBackendfrom utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreamsfrom utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)from utils.plots import Annotator, colors, save_one_boxfrom utils.torch_utils import select_device, smart_inference_mode@smart_inference_mode()def run( weights=ROOT / "yolov5s.pt", # model path or triton URL source=ROOT / "data/video/", data=ROOT / "data/coco128.yaml", # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / "runs/detect", # save results to project/name name="exp", # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride): source = str(source) save_img = not nosave and not source.endswith(".txt") # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) screenshot = source.lower().startswith("screen") if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) bs = len(dataset) elif screenshot: dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f"{i}: " else: p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt s += "%gx%g " % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{"s" * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(f"{txt_path}.txt", "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}") annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True) # Stream results im0 = annotator.result() if view_img: if platform.system() == "Linux" and p not in windows: windows.append(p) cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]) cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == "image": cv2.imwrite(save_path, im0) else: # "video" or "stream" if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix(".mp4")) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f"{s}{"" if len(det) else "(no detections), "}{dt[1].dt * 1E3:.1f}ms") # Print results t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob("labels/*.txt")))} labels saved to {save_dir / "labels"}" if save_txt else "" LOGGER.info(f"Results saved to {colorstr("bold", save_dir)}{s}") if update: strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL") parser.add_argument("--source", type=str, default=ROOT / "0", help="file/dir/URL/glob/screen/1(webcam)") parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path") parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w") parser.add_argument("--conf-thres", type=float, default=0.45, help="confidence threshold") parser.add_argument("--iou-thres", type=float, default=0.2, help="NMS IoU threshold") parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image") parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") parser.add_argument("--view-img", action="store_true", help="show results") parser.add_argument("--save-txt", action="store_true", help="save results to *.txt") parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels") parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes") parser.add_argument("--nosave", action="store_true", help="do not save images/videos") parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3") parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS") parser.add_argument("--augment", action="store_true", help="augmented inference") parser.add_argument("--visualize", action="store_true", help="visualize features") parser.add_argument("--update", action="store_true", help="update all models") parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name") parser.add_argument("--name", default="exp", help="save results to project/name") parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)") parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels") parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences") parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride") opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return optdef main(opt): check_requirements(exclude=("tensorboard", "thop")) run(**vars(opt))if __name__ == "__main__": opt = parse_opt() main(opt)
分析代码并删减不用的部分import argparseimport osimport platformimport sysfrom pathlib import Pathimport torchFILE = Path(__file__).resolve()ROOT = FILE.parents[0] # YOLOv5 root directoryif str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATHROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relativefrom models.common import DetectMultiBackendfrom utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreamsfrom utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)from utils.plots import Annotator, colors, save_one_boxfrom utils.torch_utils import select_device, smart_inference_mode
做了一些包的导入,定义了一些全局变量,先保留下来,没用的最后删
向下
if __name__ == "__main__": opt = parse_opt() main(opt)
从if __name__ == "__main_
_开始opt = parse_opt
就是一个获取命令行参数的函数,我们并不需要,可以删
进入main
函数
def main(opt): check_requirements(exclude=("tensorboard", "thop")) run(**vars(opt))
check_requirements
函数检查requirements是否全都安装好了,无用,删了
进入run
函数
source = str(source) save_img = not nosave and not source.endswith(".txt") # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://")) webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file) screenshot = source.lower().startswith("screen") if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
判断source的类型,即要要推理的源是什么,判断源是文件还是url还是webcam或者screenshot ,定义保存文件夹,我不需要保存,只需要实时检测屏幕,删除
继续向下,是加载模型的代码
# Load modeldevice = select_device(device)model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
得知加载模型需要几个参数,分别是weights, device=device, dnn=dnn, data=data, fp16=half
通过开始的形参可知:
weights=ROOT / "yolov5s.pt"
也就是模型的名称device
通过select_device
函数得到dnn
和fp16
在run
函数里的参数都是FALSE故加载模型的代码可以改写成
def LoadModule(): device = select_device("") weights = "yolov5s.pt" model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False) return model
继续往下读
bs = 1 # batch_size if webcam: view_img = check_imshow(warn=True) dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) bs = len(dataset) elif screenshot: dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) vid_path, vid_writer = [None] * bs, [None] * bs
这里如果是使用网络摄像头作为输入,会通过LoadStreams类加载视频流,根据图像大小和步长采样,如果使用截图作为输入,则通过LoadScreenshots加载截图,都不是则通过LoadImages类加载图片文件这是YOLOV5提供的加载dataset的部分,我们可以添加自己的dataset,所以删掉
继续往下
# Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))
用于模型预热,传入形状为(1, 3, *imgsz)的图像进行预热操作,没用删了
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
未知作用,删了
for path, im, im0s, vid_cap, s in dataset: with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
上面这段for循环用于遍历数据集中的每个图像或视频帧进行推理,在循环的开头,将路径、图像、原始图像、视频捕获对象和步长传递给path, im, im0s, vid_cap, s。推理实时屏幕只需要传一张图片,所以不存在将遍历推理,所以要进行改写,改写成
im = torch.from_numpy(im).to(model.device)im = im.half() if model.fp16 else im.float() # uint8 to fp16/32im /= 255 # 0 - 255 to 0.0 - 1.0if len(im.shape) == 3: im = im[None] # expand for batch dimvisualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else Falsepred = model(im, augment=augment, visualize=visualize)pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
这里是对 im 进行转换和推理,而改写的代码中没有im变量,则寻找im的来源for path, im, im0s, vid_cap, s in dataset:
im
来源于dataset
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
dataset
来源于LoadImages
的返回值
查看LoadImages
的函数返回值和返回值的来源
在dataloaders.py中可以看到
if self.transforms: im = self.transforms(im0) # transformselse: im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB im = np.ascontiguousarray(im) # contiguousreturn path, im, im0, self.cap, s
如果transforms
存在,则转换,如果transforms
不存在,则调用letterbox函数对图像im0进行缩放和填充,使其符合模型要求的图像大小,将图像的通道顺序由HWC转换为CHW,将图像的通道顺序由BGR转换为RGB,将图像转换为连续的内存布局
其中需要的参数是im0, self.img_size, stride=self.stride, auto=self.auto
im0则是未经处理的图片,img_size填640(因为模型的图片大小训练的是640),stride填64(默认参数为64),auto填True则得到改写代码为
im = letterbox(img0, 640, stride=32, auto=True)[0] # padded resize im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim pred = model(im, augment=False, visualize=False) pred = non_max_suppression(pred, conf_thres=conf_thres, iou_thres=iou_thres, classes=None, agnostic=False, max_det=1000)
继续向下
for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f"{i}: " else: p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}") # im.txt s += "%gx%g " % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{"s" * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(f"{txt_path}.txt", "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}") annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)
这段代码将推理后的结果进行转换,转换为label format,成为人能看懂的格式,删去输出结果,留下写入结果中的,格式转换,删掉保存为txt文件,得到需要的box,然后自己写一个boxs=[],将结果append进去,方便在OpenCV中绘画识别方框,改写结果为
boxs=[] for i, det in enumerate(pred): # per image im0 = img0.copy() s = " " s += "%gx%g " % im.shape[2:] # print string gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = img0 # for save_crop if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{"s" * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh) # label format box = ("%g " * len(line)).rstrip() % line box = box.split(" ") boxs.append(box)
就此完成了推理部分的删减和重写
把屏幕的截图通过OpenCV进行显示写一个屏幕截图的文件写成 grabscreen.py
# 文件名:grabscreen.pyimport cv2import numpy as npimport win32guiimport win32printimport win32uiimport win32conimport win32apiimport mssdef grab_screen_win32(region): hwin = win32gui.GetDesktopWindow() left, top, x2, y2 = region width = x2 - left + 1 height = y2 - top + 1 hwindc = win32gui.GetWindowDC(hwin) srcdc = win32ui.CreateDCFromHandle(hwindc) memdc = srcdc.CreateCompatibleDC() bmp = win32ui.CreateBitmap() bmp.CreateCompatibleBitmap(srcdc, width, height) memdc.SelectObject(bmp) memdc.BitBlt((0, 0), (width, height), srcdc, (left, top), win32con.SRCCOPY) signedIntsArray = bmp.GetBitmapBits(True) img = np.fromstring(signedIntsArray, dtype="uint8") img.shape = (height, width, 4) srcdc.DeleteDC() memdc.DeleteDC() win32gui.ReleaseDC(hwin, hwindc) win32gui.DeleteObject(bmp.GetHandle()) return cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
通过img0 = grab_screen_win32(region=(0, 0, 1920, 1080))
来作为im的参数传入,即可让屏幕截图作为推理图片
if len(boxs): for i, det in enumerate(boxs): _, x_center, y_center, width, height = det x_center, width = re_x * float(x_center), re_x * float(width) y_center, height = re_y * float(y_center), re_y * float(height) top_left = (int(x_center - width / 2.), int(y_center - height / 2.)) bottom_right = (int(x_center + width / 2.), int(y_center + height / 2.)) color = (0, 0, 255) # RGB cv2.rectangle(img0, top_left, bottom_right, color, thickness=thickness)和cv2.namedWindow("windows", cv2.WINDOW_NORMAL)cv2.resizeWindow("windows", re_x // 2, re_y // 2)cv2.imshow("windows", img0)HWND = win32gui.FindWindow(None, "windows")win32gui.SetWindowPos(HWND, win32con.HWND_TOPMOST, 0, 0, 0, 0, win32con.SWP_NOMOVE | win32con.SWP_NOSIZE)
结合在一起
最终代码import torch, pynputimport numpy as npimport win32gui, win32con, cv2from grabscreen import grab_screen_win32 # 本地文件from utils.augmentations import letterboxfrom models.common import DetectMultiBackendfrom utils.torch_utils import select_devicefrom utils.general import non_max_suppression, scale_boxes, xyxy2xywh# 可调参数conf_thres = 0.25iou_thres = 0.05thickness = 2x, y = (1920, 1080)re_x, re_y = (1920, 1080)def LoadModule(): device = select_device("") weights = "yolov5s.pt" model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False) return modelmodel = LoadModule()while True: names = model.names img0 = grab_screen_win32(region=(0, 0, 1920, 1080)) im = letterbox(img0, 640, stride=32, auto=True)[0] # padded resize im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim pred = model(im, augment=False, visualize=False) pred = non_max_suppression(pred, conf_thres=conf_thres, iou_thres=iou_thres, classes=None, agnostic=False, max_det=1000) boxs=[] for i, det in enumerate(pred): # per image im0 = img0.copy() s = " " s += "%gx%g " % im.shape[2:] # print string gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = img0 # for save_crop if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{"s" * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh) # label format box = ("%g " * len(line)).rstrip() % line box = box.split(" ") boxs.append(box) if len(boxs): for i, det in enumerate(boxs): _, x_center, y_center, width, height = det x_center, width = re_x * float(x_center), re_x * float(width) y_center, height = re_y * float(y_center), re_y * float(height) top_left = (int(x_center - width / 2.), int(y_center - height / 2.)) bottom_right = (int(x_center + width / 2.), int(y_center + height / 2.)) color = (0, 0, 255) # RGB cv2.rectangle(img0, top_left, bottom_right, color, thickness=thickness) if cv2.waitKey(1) & 0xFF == ord("q"): cv2.destroyWindow() break cv2.namedWindow("windows", cv2.WINDOW_NORMAL) cv2.resizeWindow("windows", re_x // 2, re_y // 2) cv2.imshow("windows", img0) HWND = win32gui.FindWindow(None, "windows") win32gui.SetWindowPos(HWND, win32con.HWND_TOPMOST, 0, 0, 0, 0, win32con.SWP_NOMOVE | win32con.SWP_NOSIZE)
End.
标签:

壮汉融合的文化遗产——陈氏滴水观音艾灸保健疗法
2022-06-20

夏季吃什么水果养阴生津?葡萄是个不错的选择
2022-06-20

凉茶≠凉的茶 喝凉了的凉茶真的健康吗?凉茶为什么不能凉着喝
2022-06-20

国家统计局:5月份一线城市二手住宅销售价格环比下降0.4%
2022-06-20

金科服务:拟收购佳源服务73.56%股权框架协议终止
2022-06-20

金茂物管4.5亿元收购首置物业服务公司100%股权
2022-06-20

旭辉控股回应大裁员:正考虑对造谣者采取必要措施
2022-06-20

山东深耕文化资源 推动旅游业高质量发展
2021-12-02

四川非遗传承人张雄志:巧手捏面塑 指尖传非遗
2021-12-02

10月以来我国寒潮为何如此频繁?中国气象局回应
2021-12-02
夏季吃什么水果养阴生津?葡萄是个不错的选择
凉茶≠凉的茶 喝凉了的凉茶真的健康吗?凉茶为什么不能凉着喝
国家统计局:5月份一线城市二手住宅销售价格环比下降0.4%
金科服务:拟收购佳源服务73.56%股权框架协议终止
金茂物管4.5亿元收购首置物业服务公司100%股权
旭辉控股回应大裁员:正考虑对造谣者采取必要措施
哈尔滨新增本土确诊病例3例 活动轨迹公布
哈尔滨市公布3例新增本土新冠肺炎确诊病例活动轨迹
山东深耕文化资源 推动旅游业高质量发展
今年新增952件(套)!南京大屠杀再添新证
四川非遗传承人张雄志:巧手捏面塑 指尖传非遗
10月以来我国寒潮为何如此频繁?中国气象局回应
56位残疾人士登上黄山 互利互勉共建生活希望
安徽潜山两车相撞 已致8人死亡3人受伤
上海洋山海关首次在出口货运渠道查获夹带卷烟
山西忻州古城:一城风华延续千年历史文脉
呼伦贝尔新巴尔虎右旗公布1例无症状感染者行动轨迹
西藏林芝:多彩民俗活动迎接工布新年
面对儿童不得不防的“杀手”,这把椅子很重要!
新增“53+1” 内蒙古累计本土确诊病例增至185例
昆明公安打击破坏生物多样性犯罪 抓获130名涉案嫌疑人
山西朔州“11·11”较大透水事故调查报告发布 对38人问责处理
“海关国门小卫士”竞争上岗 淘汰率接近一半
深圳摧毁特大品牌化妆品走私网
28人被问责!山西石港煤业“3·25”事故调查报告公布
湖南韶山以河长制带动全民治水 让每一处水面“长治久清”
民进会员谈反映社情民意信息工作:心怀大我 敢讲实情
80岁“留守”奶奶短视频诉孤独 千万网友心疼:我们陪您唠嗑
40年来为子弟兵送出1.3万余双布鞋和鞋垫的“布鞋奶奶”走了


- 当男幼师是什么体验?他们说:有委屈尴尬 但大部分是幸福
- 庐阳警方通报幼童坠亡事件:嫌疑人已被刑拘
- 内蒙古新增本土确诊病例53例、本土无症状感染者1例
- 哈尔滨市启动部分地区第一轮全员核酸检测
- 四川通江发生两车相撞事故 致3人死亡
- 11月谣言在“身边”,别信这些无稽之谈
- 追剧为何上瘾?你追的不是剧,而是及时满足的快感
- 对症下药“十年痼疾”,“茶博士”帮老茶园重焕生机
- 不会融化的“果冻冰块”研制成功 有望改变食物冷藏方式
- “逆行”考研=集体滑落?这结论该慎下
- 老鼠油治烫伤致孩子进ICU 害人偏方为何被奉为灵丹妙药
- 老人被野猪咬伤 打猎者赔了5万多
- 既促进生产又保护生态他用古代农耕智慧造福现代农业
- “布鞋奶奶”走了 曾亲自给部队子弟兵送鞋40年
- 试行“家长学校”“持证上岗”?可以引导但不宜“法外加槛”
- 成为“南京胖哥”后的日子:见义勇为被捅伤 他说不后悔
- “法不责众”不是健走团“占道”的护身符
- 北京五道口增设行人信号灯四面全绿时段
- 北京道路停车支持ETC无感支付
- 北京多措并举提高生物多样性 今冬将迎300万只候鸟
- 北京:建议研考考生考前14天在京备考
- 将“干部”当店名 这个口子不能开
- 北京市2022年民生实事邀市民投票
- 吸氢气就能抗癌又防衰?最新“科学”流言榜发布
- 北京:242辆京牌小客车参加司法处置
- 云南磨憨边检站中老边境缴毒逾4公斤
- 故宫博物院2022年年票紧急停售 恢复销售时间将另行公告
- 世界艾滋病日:关于艾滋病,我想和你聊聊
- 北京:保障在校体育锻炼1小时获较高认可
- 满洲里高风险地区增至6个 中国内地新冠疫苗接种超25亿剂次
- 内蒙古满洲里公布55例本土确诊病例行动轨迹
- 四川绵竹首次拍摄到野生大熊猫标记行为 划定领地或吸引异性
- 广州长隆举办“猿猴特展” 稀有“夜猴”首秀
- 满洲里对公路、铁路口岸所有环节和场地加强闭环管理
- 安徽合肥警方严打食药环知森领域违法犯罪 侦破重特大案件14起
- 北京海关今年已查获2700余批次涉嫌侵权商品
- 福建福州海警局利用无人机成功查获一起非法采矿案
- 陕西83所高校辅导员“比技能、拼实力” “以赛促学”提升专业素质
- 西安警方侦破特大制毒贩毒案 缴获成品半成品疑似毒品10余公斤
- 全球首次荒漠猫卫星颈圈跟踪研究取得新进展
- 内蒙古满洲里公布55名确诊病例详情:有26名学生
- 中国唯一艾滋病患儿学校成立十周年
- 昆明境外既往感染复阳病例关联人员两轮核酸检测均为阴性
- 重庆:非法捕捞工具集中销毁 营造良好禁捕氛围
- 中演协发声明辟谣网络不实言论 将依法维护权益
- 浙江:中老年群体艾滋病感染者占比有增加趋势
- 宁夏:保障三孩生育政策配套支持措施
- 青海茫崖森警大队救助濒危野生动物黑鸢
- 西宁市发放公交“蓝焰卡” 消防指战员可免费乘车
- 河北衡水中级以上职称医师下沉乡镇卫生院 实现优质人才全覆盖